© 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they cu
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book C++ How to Program, 5th Edition,
by Deitel and Deitel. ISBN 0-13-185757-6.

Object-
Oriented
Programming:
Inheritance

In this chapter you will learn:

= To create classes by inheriting from existing classes.
= How inheritance promotes software reuse.

= The notions of base classes and derived classes and the
relationships between them.

= The protected member access specifier.

= The use of constructors and destructors in inheritance
hierarchies.

= The differences between pub1ic, protected and
private inheritance.

= The use of inheritance to customize existing software.

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

634

Chapter 12 Object-Oriented Programming: Inheritance

Self-Review Exercises

12.1

12.2

Fill in the blanks in each of the following statements:

a) is a form of software reuse in which new classes absorb the data and behav-
iors of existing classes and embellish these classes with new capabilities.

ANS: Inheritance.

b) A base class’s members can be accessed only in the base-class definition or
in derived-class definitions.

ANS: protected.

c) Ina(n) relationship, an object of a derived class also can be treated as an
object of its base class.

ANS: is-a or inheritance.

d) Ina(n) relationship, a class object has one or more objects of other classes
as members.

ANS: has-a or composition or aggregation.

¢) Insingle inheritance, a class exists in a(n) relationship with its derived classes.
ANS: hierarchical.
f) A base class’s members are accessible within that base class and anywhere

that the program has a handle to an object of that base class or to an object of one of its
derived classes.

ANS: public.

g) A base class’s protected access members have a level of protection between those of
pubTic and access.

ANS: private.

h) C++ provides for , which allows a derived class to inherit from many base

classes, even if these base classes are unrelated.

ANS: multiple inheritance.

i) When an object of a derived class is instantiated, the base class’s is called
implicitly or explicitly to do any necessary initialization of the base-class data members
in the derived-class object.

ANS: constructor.

j) When deriving a class from a base class with pub1ic inheritance, pub1ic members of the
base class become members of the derived class, and protected members
of the base class become members of the derived class.

ANS: public, protected.

k) When deriving a class from a base class with protected inheritance, pub1ic members of
the base class become members of the derived class, and protected mem-
bers of the base class become members of the derived class.

ANS: protected, protected.

State whether each of the following is zrue or false. If false, explain why.

a) Base-class constructors are not inherited by derived classes.

ANS: True.

b) A has-a relationship is implemented via inheritance.

ANS: False. A has-a relationship is implemented via composition. An #s-a relationship is
implemented via inheritance.

¢) A Car class has an 7s-a relationship with the Steeringwheel and Brakes classes.

ANS: False. This is an example of a has-a relationship. Class Car has an 7s-a relationship
with class Vehicle.

d) Inheritance encourages the reuse of proven high-quality software.

ANS: True.

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises 635

e) When a derived-class object is destroyed, the destructors are called in the reverse order
of the constructors.
ANS: True.

Exercises

12.3 Many programs written with inheritance could be written with composition instead, and
vice versa. Rewrite class BasePTusCommissionEmployee of the CommissionEmployee—BasePTusCom-
missionEmployee hierarchy to use composition rather than inheritance. After you do this, assess the
relative merits of the two approaches for designing classes CommissionEmployee and BasePTusCom-
missionEmployee, as well as for object-oriented programs in general. Which approach is more nat-
ural? Why?

ANS: For a relatively short program like this one, either approach is acceptable. But as pro-
grams become larger with more and more objects being instantiated, inheritance be-
comes preferable because it makes the program easier to modify and promotes the
reuse of code. The inheritance approach is more natural because a base-salaried com-
mission employee 7s 2 commission employee. Composition is defined by the “has-a”
relationship, and clearly it would be strange to say that “a base-salaried commission
employee has a commission employee.”

#ifndef
#define

#include <string>
using std::string;

#include

class BasePlusCommissionEmpTloyee
{
public:
BasePlusCommissionEmployee(const string &, const string &,
const string &, double = , double = , double =);

void setFirstName(const string &);
string getFirstName() const;

void setlLastName(const string &);
string getlLastName() const;

void setSocialSecurityNumber(const string &);
string getSocialSecurityNumber() const;

void setGrossSales(double);
doubTle getGrossSales() const;

void setCommissionRate(double);
doubTle getCommissionRate() const;

void setBaseSalary(double);
double getBaseSalary() const;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

636 Chapter 12 Object-Oriented Programming: Inheritance

double earnings() const;
void print() const;
private:
double baseSalary;
CommissionEmpToyee commissionEmployee;

3

#endif

#include <iostream>
using std::cout;

#include

BasePlusCommissionEmpTloyee: :BasePTusCommissionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate, double salary)
: commissionEmployee(first, last, ssn, sales, rate)

setBaseSalary(salary);

void BasePlusCommissionEmployee::setFirstName(const string &first)

{
}

commissionEmployee.setFirstName(first);

string BasePlusCommissionEmpTloyee: :getFirstName() const

{
}

return commissionEmployee.getFirstName();

void BasePlusCommissionEmployee::setLastName(const string &last)

{
}

commissionEmployee.setlLastName(last);

string BasePlusCommissionEmpTloyee: :getLastName() const

{
}

return commissionEmployee.getLastName();

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

637

void BasePTusCommissionEmployee: :setSocialSecurityNumber(
const string &ssn)

{
}

commissionEmployee.setSocialSecurityNumber(ssn);

string BasePlusCommissionEmpTloyee: :getSocialSecurityNumber() const

{
}

return commissionEmployee.getSocialSecurityNumber();

void BasePTusCommissionEmpTloyee::setGrossSales(double sales)

{
}

commissionEmployee.setGrossSales(sales);

double BasePlusCommissionEmployee: :getGrossSales() const

{
}

return commissionEmployee.getGrossSales();

void BasePTusCommissionEmployee::setCommissionRate(double rate)

{
}

commissionEmployee.setCommissionRate(rate);

double BasePlusCommissionEmployee: :getCommissionRate() const

{
}

return commissionEmployee.getCommissionRate();

void BasePTusCommissionEmployee::setBaseSalary(double salary)

{

baseSalary = (salary <) ? : salary;

}

double BasePlusCommissionEmployee: :getBaseSalary() const

{
}

return baseSalary;

double BasePlusCommissionEmployee: :earnings() const

{

return getBaseSalary() + commissionEmployee.earnings(Q);

}

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

638

Chapter 12 Object-Oriented Programming: Inheritance

void BasePTusCommissionEmployee::print() const

{

12.4

cout << :

commissionEmployee.print();

cout << << getBaseSalary(Q);

Discuss the ways in which inheritance promotes software reuse, saves time during program

development and helps prevent errors.

12.5

ANS: Inheritance allows developers to create derived classes that reuse code declared already

in a base class. Avoiding the duplication of common functionality between several
classes by building an inheritance hierarchy to contain the classes can save developers
a considerable amount of time. Similarly, placing common functionality in a single
base class, rather than duplicating the code in multiple unrelated classes, helps pre-
vent the same errors from appearing in multiple source-code files. If several classes
each contain duplicate code containing an error, the software developer has to spend
time correcting each source-code file with the error. However, if these classes take ad-
vantage of inheritance, and the error occurs in the common functionality of the base
class, the software developer needs to modify only the base class’s code.

Some programmers prefer not to use protected access because they believe it breaks the

encapsulation of the base class. Discuss the relative merits of using protected access vs. using
private access in base classes.

12.6

ANS: private data members are hidden in the base class and are accessible only through

the pub1ic or protected member functions of the base class. Using protected access
enables the derived class to manipulate the protected members without using the ac-
cess functions of the base class. If the base class members are private, the member
functions of the base class must be used to access the data. This may result in a de-
crease in performance due to the extra function calls, yet accessing and modifying
private data in this indirect manner helps ensure that the data in the base class re-
mains consistent.

Draw an inheritance hierarchy for students at a university similar to the hierarchy shown in

Fig. 12.2. Use Student as the base class of the hierarchy, then include classes UndergraduateStudent
and GraduateStudent that derive from Student. Continue to extend the hierarchy as deep (i.e., as
many levels) as possible. For example, Freshman, Sophomore, Junior and Senior might derive from
UndergraduateStudent, and DoctoralStudent and MastersStudent might derive from Graduate-

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises 639

Student. After drawing the hierarchy, discuss the relationships that exist between the classes. [NVoze:
You do not need to write any code for this exercise.]

ANS:
Student
UndergraduateStudent GraduateStudent
Freshman / \ Senior DoctoralStudent MastersStudent
Sophomore Junior

This hierarchy contains many “is-a” (inheritance) relationships. An UndergraduateStudent is
a Student. A GraduateStudent 7s 2 Student too. Each of the classes Freshman, Sophomore, Junior
and Senior is an UndergraduateStudent and zs @ Student. Each of the classes DoctoralStudent and
MastersStudent 7s 2 GraduateStudent and 7s # Student.

12.7 The world of shapes is much richer than the shapes included in the inheritance hierarchy
of Fig. 12.3. Write down all the shapes you can think of—both two-dimensional and three-dimen-
sional—and form them into a more complete Shape hierarchy with as many levels as possible. Your
hierarchy should have base class Shape from which class TwoDimensionalShape and class ThreeDi-

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

640 Chapter 12 Object-Oriented Programming: Inheritance

mensionalShape are derived. [Note: You do not need to write any code for this exercise.] We will use
this hierarchy in the exercises of Chapter 13 to process a set of distinct shapes as objects of base-class
Shape. (This technique, called polymorphism, is the subject of Chapter 13.)

ANS: [Note: Solutions may vary.]

Shape
/ \
TwoDimensionalShape ThreeDimensionalShape
A N Al RN
Quadrilateral Ellipse Triangle Sphere Cube Cylinder
T 1
Trapezoid Circle Cone Prism
Parallelogram Dodecahedron Tetrahedron
|
Rhombus Rectangle
T
Square

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises 641

12.8 Draw an inheritance hierarchy for classes Quadrilateral, Trapezoid, Parallelogram, Rect-
angle and Square. Use Quadrilateral as the base class of the hierarchy. Make the hierarchy as deep
as possible.

ANS:

Quadrilateral

i

Trapezoid

i

Parallelogram

i

Rectangle

i

Square

12.9 (Package Inheritance Hierarchy) Package-delivery services, such as FedEx®, DHL® and
UPS®, offer a number of different shipping options, each with specific costs associated. Create an
inheritance hierarchy to represent various types of packages. Use Package as the base class of the hi-
erarchy, then include classes TwoDayPackage and OvernightPackage that derive from Package. Base
class Package should include data members representing the name, address, city, state and ZIP code
for both the sender and the recipient of the package, in addition to data members that store the
weight (in ounces) and cost per ounce to ship the package. Package’s constructor should initialize
these data members. Ensure that the weight and cost per ounce contain positive values. Package
should provide a pub1ic member function calculateCost that returns a double indicating the cost
associated with shipping the package. Package’s calculateCost function should determine the cost
by multiplying the weight by the cost per ounce. Derived class TwoDayPackage should inherit the
functionality of base class Package, but also include a data member that represents a flat fee that the
shipping company charges for two-day-delivery service. TwoDayPackage’s constructor should receive
a value to initialize this data member. TwoDayPackage should redefine member function calculate-
Cost so that it computes the shipping cost by adding the flat fee to the weight-based cost calculated
by base class Package’s calculateCost function. Class OvernightPackage should inherit directly
from class Package and contain an additional data member representing an additional fee per ounce
charged for overnight-delivery service. OvernightPackage should redefine member function calcu-
TlateCost so that it adds the additional fee per ounce to the standard cost per ounce before calculat-
ing the shipping cost. Write a test program that creates objects of each type of Package and tests
member function calculateCost.
ANS:

#ifndef

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

642 Chapter 12 Object-Oriented Programming: Inheritance

#define

#include <string>
using std::string;

class Package

{
public:

Package(const string &, const string &, const string &,
const string &, int, const string &, const string &, const string &,
const string &, int, double, double);

void setSenderName(const string &);
string getSenderName() const;

void setSenderAddress(const string &);
string getSenderAddress() const;

void setSenderCity(const string &);
string getSenderCity() const;

void setSenderState(const string &);
string getSenderState() const;

void setSenderZIP(int);

int getSenderZIP() const;

void setRecipientName(const string &);
string getRecipientName() const;

void setRecipientAddress(const string &);
string getRecipientAddress() const;

void setRecipientCity(const string &);
string getRecipientCity() const;

void setRecipientState(const string &);
string getRecipientState() const;

void setRecipientZIP(int);

int getRecipientZIP() const;

void setWeight(double);

double getWeight() const;

void setCostPerOunce(double);

doubTle getCostPerOunce() const;

double calculateCost() const;
private:

string senderName;
string senderAddress;
string senderCity;
string senderState;

int senderZIP;

string recipientName;
string recipientAddress;
string recipientCity;
string recipientState;
int recipientZIP;

double weight;
double costPerQOunce;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises 643

#endif

#include

Package: :Package(const string &sName, const string &sAddress,

const string &sCity, const string &sState, int sZIP,

const string &rName, const string &rAddress, const string &rCity,

const string &rState, int rZIP, double w, double cost)

: senderName(sName), senderAddress(sAddress), senderCity(sCity),
senderState(sState), senderZIP(sZIP), recipientName(rName),
recipientAddress(rAddress), recipientCity(rCity),
recipientState(rState), recipientZIP(rZIP)

setWeight(w);
setCostPerOunce(cost);

void Package::setSenderName(const string &name)

{

senderName = name;

}

string Package::getSenderName() const

{
}

return senderName;

void Package::setSenderAddress(const string &address)

{

senderAddress = address;

}

string Package::getSenderAddress() const

{
}

return senderAddress;

void Package::setSenderCity(const string &city)

{
senderCity = city;
}

string Package::getSenderCity() const

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

644 Chapter 12 Object-Oriented Programming: Inheritance

return senderCity;

void Package::setSenderState(const string &state)

{
}

senderState = state;

string Package::getSenderState() const

{
}

return senderState;

void Package::setSenderZIP(int zip)
{

}

senderZIP = zip;

int Package::getSenderZIP() const
{

}

return senderZIP;

void Package::setRecipientName(const string &name)

{
}

recipientName = name;

string Package::getRecipientName() const

{
}

return recipientName;

void Package::setRecipientAddress(const string &address)

{
}

recipientAddress = address;

string Package::getRecipientAddress() const

{
}

return recipientAddress;

void Package::setRecipientCity(const string &city)
{

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises

recipientCity = city;

string Package::getRecipientCity() const
{

}

return recipientCity;

void Package::setRecipientState(const string &state)

{
}

recipientState = state;

string Package::getRecipientState() const

{
}

return recipientState;

void Package::setRecipientZIP(int zip)
{

recipientZIP = zip;

}

int Package::getRecipientZIP() const
{

}

return recipientZIP;

void Package::setWeight(double w)
{

weight = (w <) ? owg

}

doubTe Package::getWeight() const
{

}

return weight;

void Package::setCostPerOunce(double cost)

{

costPerOunce = (cost <) ? . cost;

}

double Package::getCostPerQOunce() const

{

return costPerOunce;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

645

646 Chapter 12 Object-Oriented Programming: Inheritance

double Package::calculateCost() const
{

return getWeight() * getCostPerOunce();
}

#ifndef
#define

#include

class TwoDayPackage : public Package
{
public:
TwoDayPackage(const string &, const string &, const string &,
const string &, int, const string &, const string &, const string &,
const string &, int, double, double, double);

void setFlatFee(double);
double getFlatFee() const;

double calculateCost() const;
private:

double flatFee;
b

#endif

#include

TwoDayPackage: : TwoDayPackage(const string &sName,
const string &sAddress, const string &sCity, const string &sState,
int sZIP, const string &rName, const string &rAddress,
const string &rCity, const string &rState, int rZIP,
double w, double cost, double fee)
: Package(sName, sAddress, sCity, sState, sZIP,
rName, rAddress, rCity, rState, rZIP, w, cost)

setFlatFee(fee);

void TwoDayPackage::setFlatFee(double fee)

{
flatFee = (fee <) ? : fee;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises 647

double TwoDayPackage: :getFlatFee() const
{

return flatFee;

}

doubTe TwoDayPackage: :calculateCost() const

{
}

return Package::calculateCost() + getFlatFee();

#ifndef
#define

#include

class OvernightPackage : public Package
{
public:
OvernightPackage(const string &, const string &, const string &,
const string &, int, const string &, const string &, const string &,
const string &, int, double, double, double);

void setOvernightFeePerOunce(double);
double getOvernightFeePerOunce() const;

double calculateCost() const;
private:
double overnightFeePerOunce;

g

#endif

#include

OvernightPackage: :OvernightPackage(const string &sName,
const string &sAddress, const string &sCity, const string &sState,
int sZIP, const string &rName, const string &rAddress,
const string &rCity, const string &rState, int rZIP,
double w, double cost, double fee)
: Package(sName, sAddress, sCity, sState, sZIP,
rName, rAddress, rCity, rState, rZIP, w, cost)

setOvernightFeePerQunce(fee);

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

648 Chapter 12 Object-Oriented Programming: Inheritance

void OvernightPackage::setOvernightFeePerOunce(double overnightFee)

{

overnightFeePerOunce = (overnightFee <) ? : overnightFee;

}

doubTle OvernightPackage::getOvernightFeePerOunce() const
{

}

return overnightFeePerOunce;

double OvernightPackage::calculateCost() const
{

return getWeight() * (getCostPerOunce() + getOvernightFeePerOunce());
}

#include <iostream>
using std::cout;
using std::endl;

#include <iomanip>
using std::setprecision;
using std::fixed;

#include
#include
#include

int mainQ)

{
Package packagel(5 5 5 o 5
’ ’ ’ ’ ’ ’);
TwoDayPackage package2(5 o , ,
)))3
OvernightPackage package3(: ;))
g =lg)3
cout << fixed << setprecision(2);
cout << << packagel.getSenderName()
<< << packagel.getSenderAddress() <<
<< packagel.getSenderCity() << << packagel.getSenderState()
<< << packagel.getSenderZIP();
cout << << packagel.getRecipientName()
<< << packagel.getRecipientAddress() <<

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

649

<< packagel.getRecipientCity() <<
<< packagel.getRecipientState() <<
<< packagel.getRecipientZIP();

cout << << packagel.calculateCost() << endl;
cout << << package2.getSenderName()
<< << package2.getSenderAddress() <<
<< package2.getSenderCity() << << package2.getSenderState()
<< << package2.getSenderZIP(Q);
cout << << package2.getRecipientName()
<< << package2.getRecipientAddress() <<

<< package2.getRecipientCity() <<
<< package2.getRecipientState() <<
<< package2.getRecipientZIP(Q);

cout << << package2.calculateCost() << endl;
cout << << package3.getSenderName()
<< << package3.getSenderAddress() <<
<< package3.getSenderCity() << << package3.getSenderState()
<< << package3.getSenderZIP();
cout << << package3.getRecipientName()
<< << package3.getRecipientAddress() <<

<< package3.getRecipientCity() <<

<< package3.getRecipientState() <<

<< package3.getRecipientZIP();
cout << << package3.calculateCost() << endl;
return 0;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

650

Package 1:

Sender:

Lou Brown

1 Main St
Boston, MA 11111

Recipient:

Mary Smith

7 Elm St

New York, NY 22222

Cost: $4.25
Package 2:

Sender:

Lisa Klein

5 Broadway
Somerville, MA 33333

Recipient:
Bob George
21 Pine Rd
Cambridge, MA 44444

Cost: $8.82
Package 3:

Sender:

Ed Lewis

2 Oak St

Boston, MA 55555

Recipient:
Don Kelly
9 Main St
Denver, CO 66666

Cost: $11.64

(Account Inberitance Hierarchy) Create an inheritance hierarchy that a bank might use to
represent customers’ bank accounts. All customers at this bank can deposit (i.e., credit) money into
their accounts and withdraw (i.e., debit) money from their accounts. More specific types of accounts
also exist. Savings accounts, for instance, earn interest on the money they hold. Checking accounts,
on the other hand, charge a fee per transaction (i.e., credit or debit).

Create an inheritance hierarchy containing base class Account and derived classes Savings-
Account and CheckingAccount that inherit from class Account. Base class Account should include
one data member of type double to represent the account balance. The class should provide a con-
structor that receives an initial balance and uses it to initialize the data member. The constructor
should validate the initial balance to ensure that it is greater than or equal to 0.0. If not, the bal-
ance should be set to 0.0 and the constructor should display an error message, indicating that the
initial balance was invalid. The class should provide three member functions. Member function

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises 651

credit should add an amount to the current balance. Member function debit should withdraw
money from the Account and ensure that the debit amount does not exceed the Account’s balance.
If it does, the balance should be left unchanged and the function should print the message "Debit
amount exceeded account balance." Member function getBalance should return the current
balance.

Derived class SavingsAccount should inherit the functionality of an Account, but also include
a data member of type double indicating the interest rate (percentage) assigned to the Account.
SavingsAccount’s constructor should receive the initial balance, as well as an initial value for the
SavingsAccount’s interest rate. SavingsAccount should provide a public member function
calculateInterest that returns a double indicating the amount of interest earned by an account.
Member function calculateInterest should determine this amount by multiplying the interest
rate by the account balance. [Noze: SavingsAccount should inherit member functions credit and
debit as is without redefining them.]

Derived class CheckingAccount should inherit from base class Account and include an addi-
tional data member of type double that represents the fee charged per transaction. Checking-
Account’s constructor should receive the initial balance, as well as a parameter indicating a fee
amount. Class CheckingAccount should redefine member functions credit and debit so that they
subtract the fee from the account balance whenever either transaction is performed successfully.
CheckingAccount’s versions of these functions should invoke the base-class Account version to per-
form the updates to an account balance. CheckingAccount’s debit function should charge a fee
only if money is actually withdrawn (i.e., the debit amount does not exceed the account balance).
[Hinz: Define Account’s debit function so that it returns a bool indicating whether money was
withdrawn. Then use the return value to determine whether a fee should be charged.]

After defining the classes in this hierarchy, write a program that creates objects of each class
and tests their member functions. Add interest to the SavingsAccount object by first invoking its
calculatelInterest function, then passing the returned interest amount to the object’s credit
function.

ANS:

#ifndef
#define

class Account
{
public:
Account(double);
void credit(double);
bool debit(double);
void setBalance(double);
doubTle getBalance();
private:
double balance;

I8

#endif

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

652 Chapter 12 Object-Oriented Programming: Inheritance

#include <iostream>
using std::cout;
using std::endl;

#include

Account: :Account(double initialBalance)

{
if (initialBalance >=)
balance = initialBalance;
else
{
cout << << endl;
balance = ;
B
}

void Account::credit(double amount)

{
}

balance = balance + amount;

bool Account::debit(double amount)

{
if (amount > balance)
{
cout << << endl;
return false;
}
else
{
balance = balance - amount;
return true;
}
}

void Account::setBalance(double newBalance)

{
}

balance = newBalance;

double Account::getBalance()

{

return balance;

}

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

#ifndef
#define

#include
class SavingsAccount : public Account
{
public:
SavingsAccount(double, double);
double calculateInterest();
private:
double interestRate;

15

#endif

#include

SavingsAccount: :SavingsAccount(double initialBalance, double rate)

: Account(initialBalance)

{
}

interestRate = (rate <) ? . rate;

double SavingsAccount::calculateInterest()

{
}

return getBalance() * interestRate;

#ifndef
#define

#include
class CheckingAccount : public Account
iub]ic:

CheckingAccount(double, double);

void credit(double);

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

Exercises

653

654 Chapter 12 Object-Oriented Programming: Inheritance

bool debit(double);
private:
double transactionFee;

void chargeFee(Q);
b

#endif

#include <iostream>
using std::cout;
using std::endl;

#include
CheckingAccount: :CheckingAccount(double initialBalance, double fee)
: Account(initialBalance)

{
}

transactionFee = (fee <) ? : fee;

void CheckingAccount::credit(double amount)

{
Account::credit(amount);
chargeFee();

bool CheckingAccount: :debit(double amount)
{

bool success = Account::debit(amount);

if (success)
{
chargeFee();
return true;

}

else
return false;

void CheckingAccount: :chargeFee()

{
Account: :setBalance(getBalance() - transactionFee);
cout << << transactionFee << << endl;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

655

#include <iostream>
using std::cout;
using std::endl;

#include <iomanip>
using std::setprecision;
using std::fixed;

#include
#include
#include

int mainQ)

{
Account accountl()
SavingsAccount account2(.);
CheckingAccount account3(,);

cout << fixed << setprecision(2);

cout << << accountl.getBalance() << endl;
cout << << account2.getBalance() << endl;
cout << << account3.getBalance() << endl;
cout << << endl;
accountl.debit();

cout << << endl;
account2.debit();

cout << << endl;
account3.debit();

cout << << accountl.getBalance() << endl;
cout << << account2.getBalance() << endl;
cout << << account3.getBalance() << endl;
cout << << endl;
accountl.credit();

cout << << endl;
account2.credit();

cout << << endl;
account3.credit();

cout << << accountl.getBalance() << endl;
cout << << account2.getBalance() << endl;
cout << << account3.getBalance() << endl;

double interestEarned = account2.calculateInterest();
cout << << interestEarned <<
<< endl;

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

656

account2.credit(interestEarned);

cout << << account2.getBalance() << endl;
return 0;

accountl balance: $50.00
account2 balance: $25.00
account3 balance: $80.00
Attempting to debit $25.00 from accountl.

Attempting to debit $30.00 from account2.
Debit amount exceeded account balance.

Attempting to debit $40.00 from account3.
$1.00 transaction fee charged.

accountl balance: $25.00
account2 balance: $25.00
account3 balance: $39.00
Crediting $40.00 to accountl.
Crediting $65.00 to account2.

Crediting $20.00 to account3.
$1.00 transaction fee charged.

accountl balance: $65.00
account2 balance: $90.00
account3 balance: $58.00
Adding $2.70 interest to account2.

New account2 balance: $92.70

Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

	Statement1: © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For the exclusive use of adopters of the book C++ How to Program, 5th Edition,
by Deitel and Deitel. ISBN 0-13-185757-6.
	Deitel: Copyright ® 1992-2005 by Deitel & Associates, Inc. All Rights Reserved.

